Concordant chemical reaction networks and the Species-Reaction Graph.
نویسندگان
چکیده
In a recent paper it was shown that, for chemical reaction networks possessing a subtle structural property called concordance, dynamical behavior of a very circumscribed (and largely stable) kind is enforced, so long as the kinetics lies within the very broad and natural weakly monotonic class. In particular, multiple equilibria are precluded, as are degenerate positive equilibria. Moreover, under certain circumstances, also related to concordance, all real eigenvalues associated with a positive equilibrium are negative. Although concordance of a reaction network can be decided by readily available computational means, we show here that, when a nondegenerate network's Species-Reaction Graph satisfies certain mild conditions, concordance and its dynamical consequences are ensured. These conditions are weaker than earlier ones invoked to establish kinetic system injectivity, which, in turn, is just one ramification of network concordance. Because the Species-Reaction Graph resembles pathway depictions often drawn by biochemists, results here expand the possibility of inferring significant dynamical information directly from standard biochemical reaction diagrams.
منابع مشابه
Concordant chemical reaction networks.
We describe a large class of chemical reaction networks, those endowed with a subtle structural property called concordance. We show that the class of concordant networks coincides precisely with the class of networks which, when taken with any weakly monotonic kinetics, invariably give rise to kinetic systems that are injective - a quality that, among other things, precludes the possibility of...
متن کاملKinetic Mechanism Reduction Using Genetic Algorithms, Case Study on H2/O2 Reaction
For large and complex reacting systems, computational efficiency becomes a critical issue in process simulation, optimization and model-based control. Mechanism simplification is often a necessity to improve computational speed. We present a novel approach to simplification of reaction networks that formulates the model reduction problem as an optimization problem and solves it using geneti...
متن کاملMultiple Equilibria in Complex Chemical Reaction Networks: II. The Species-Reaction Graph
For mass action kinetics, the capacity for multiple equilibria in an isothermal homogeneous continuous flow stirred tank reactor is determined by the structure of the underlying network of chemical reactions. We suggest a new graph-theoretical method for discriminating between complex reaction networks that can admit multiple equilibria and those that cannot. In particular, we associate with ea...
متن کاملMechanism Deduction from Noisy Chemical Reaction Networks
We introduce KiNetX, a fully automated meta-algorithm for the kinetic simulation and analysis of general (complex and noisy) chemical reaction networks with rigorous uncertainty control. It is designed to cope with method inherent errors in quantum chemical calculations on elementary reaction steps. We developed and implemented KiNetX to possess three features. First, KiNetX identifies and elim...
متن کاملA unified view on bipartite species-reaction and interaction graphs for chemical reaction networks
The Jacobian matrix of a dynamic system and its principal minors play a prominent role in the study of qualitative dynamics and bifurcation analysis. When interpreting the Jacobian as an adjacency matrix of an interaction graph, its principal minors correspond to sets of disjoint cycles in this graph and conditions for various dynamic behaviors can be inferred from its cycle structure. For chem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mathematical biosciences
دوره 241 1 شماره
صفحات -
تاریخ انتشار 2013